Thursday, October 17, 2019
Energy efficient refurbishment of industrial buildings Literature review
Energy efficient refurbishment of industrial buildings - Literature review Example This fact has important implications for energy usage as well as carbon dioxide emissions globally. An estimated 30% to 40% of all primary energy usage stems from building operation along with a large potential to reduce carbon dioxide emissions (Colmenar-Santos et al., 2013, p.66). In a similar manner, other research on the matter shows that buildings tend to consume 40% of the total energy being consumed globally along with 25% of the water and another 40% of other resources. Consequently, buildings are deemed responsible for about one third of all green house gas (GHG) emissions too (Katunsky et al., 2013, p.3). The rapid pace of industrialisation and the requirement for increased industrial buildings also tends to support the idea that building energy usage efficiency is a top priority issue. Projections on urbanisation depict that by 2050; around 67% of the global population will live in urban centres such that nations with the largest urban centres will display urbanisation rat es of up to 86%. It would then be reasonable to expect that industrial buildings and their demand for energy would only rise steeply with time (Adriaenssens et al., 2013, p.1945). The operation of buildings entails significant carbon dioxide emissions on account of inefficient insulation, heating and cooling mechanism as well as lighting applications and the use of appliances. It is estimated that more energy efficient buildings have the potential to reduce carbon dioxide emissions by 3.7 giga tonnes every single year where the cost of one tonne of carbon dioxide emissions is an estimated 40 Euros (McKinsey, 2007, p.4). Other research also supports the idea that reduced heating demands, greater emphasis on renewable energy sources and bolstered efficiency of supply chain mechanisms allows for a reduction in the energy demands to operate buildings (Colmenar-Santos et al., 2013, p.66). Building heating requirements reappear repeatedly as a major consumer of energy and thus can be seen as impacting building energy usage significantly. In addition, building energy usage and its efficiency can be seen as dependant on other physical, climatic and human factors (Katunsky et al., 2013, p.3). While one perspective of looking at the problem tends to define energy usage efficiency as a key problem, other research suggests that the use of energy to cool and heat building interiors is unjustified. The use of mechanical heating and cooling measures for thermal comfort are being questioned as valid means to maintain human thermal comfort levels in buildings (Susanti et al., 2011, p.211). This does not imply that energy usage in buildings is unjustified outright, especially for regions with severe heat or cold climates, but rather that energy usage is unjustified for places where the climate can support a lack of heating and cooling requirements. It must also be noted that greener buildings are beginning to create greater commercial value, especially in terms of rent. Researc h indicates that commercial buildings with lower energy loads tend to command more rent than comparable commercial buildings with higher energy demands (Eicholtz et al., 2009, p.1). This literature review will look into already conducted research to find out the major uses for energy in industrial buildings, the various methods to reduce the consumption of energy in industrial buildings and to discover any research gaps in existing literature. Dissecting Energy Usage in Industrial Buildings In order to allow
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.